What's Going On?

Checking In

Minds on Expand

Action! Expand Again

Consolidation Expand Some More

Learning Goal - I will be able to use Pascal's Triangle to expand binomials.

Checking In

LGL

The third term of a geometric sequence is 32, the seventh term is 8,192.

What is the sum of the first 10 terms?

What is the sum of the first to terms?

$$S_{n} = \alpha(r^{n} - 1) \quad \text{or} \quad S_{n} = \frac{1}{r+1} - \frac{1}{r-1}$$

$$1. Find$$

$$32 \times r^{4} = 8192$$

$$r^{4} = 8192$$

$$32$$

$$r^{4} = 256$$

$$r = 4$$

$$2. Find$$

$$x = 32$$

$$x = 32$$

$$x = 2$$

$$5_{n} = \frac{2(4^{n} - 1)}{4 - 1}$$

$$= \frac{2(1046575)}{3}$$

$$= 644050$$

Minds on

Expand

$$(x+y)^{0} =$$

$$(x+y)^{1} = |x+y|^{2}$$

$$(x+y)^{2} = |x+y|^{2}$$

Action!

Expand Again

Expand, and arrange terms in descending degree of x

$$(x+y)^3 =$$

$$(x+y)^4$$

$$(x+y)^5$$

$$= (x+y)' (x+y)^{3} (x+y)^{2}$$

$$= (x+y)(x^{2}+2xy+y^{2})$$

$$= x^{3}+2x^{2}y+xy^{2}+x^{2}y+2xy^{2}+y^{3}$$

$$= |x^{3}+3x^{2}y+3xy^{2}+y^{3}|$$

$$(x+y)^{4}$$

$$= (x+y)^{4}$$

$$=$$

Action!

Pascal's Triangle

Write out the coefficients of each term in the expansions given below. Be sure to arrange your terms in descending order of x.

$$(x + y)^{0}$$

$$(x + y)^{1}$$

$$(x + y)^{2}$$

$$(x + y)^{3}$$

$$(x + y)^{4}$$

$$(x + y)^{5}$$

$$(x + y)^{5}$$

$$(x + y)^{5}$$

Action!

Expand Again

Expand, without actually expanding, and arrange terms in descending degree of x.

$$(x+y)^6$$

Action!

Pascal's Triangle

Action!

Pascal's Triangle

Patterns in Pascal's Triangle

There are patterns in Pascal's Triangle and in the expansion of (a + b)ⁿ

- 1. Each term in the expansion of $(a + b)^n$ is the product of a number from Pascal's Triangle, a power of a, and a power of b.
- 2. The coefficients on the terms correspond to the numbers in the nthrow in Pascal's Triangle.
- 3. In the expansion, the exponents of *a* start at *n* and decrease to 0. The exponents of *b* start at 0 and increase to *n*.
- 4. The exponents on a and b always add to n.

Consolidation

Using the Triangle

Expand

$$(x-2)^5$$

$$\Delta = X$$

$$\sqrt{2}$$

$$= |a^5 + 5a^4b + |0a^3b^2 + |0a^3b^3 + 5ab^4 + ||5$$

$$= |(x)^{3} + 5(x)^{4}(-2) + |0(x)^{3}(-2)^{2} + |0(x)^{3}(-2)^{3} + |(-2)^{3}(-2)^{4} + |(-2)^{6}(-2)^{4} + |(-2)^{6}(-2)^{6}(-2)^{6} + |(-2)^{6}(-2$$

$$- \times^5 - 10 \times^4 + 40 \times^3 - 60 \times^2 + 60 \times -32$$

Consolidation

Using the Triangle

Expand

$$(5x+2y)^3$$

$$= |a^{3} + 3a^{2}b + 3ab^{2} + |b^{3}$$

$$= |(5x)^{2} + 3(5x)^{2}(7y) + 3(5x)(7y)^{2} + |(7y)^{2} + |($$