What's Going On?

Checking In

Minds on Yesterday's Final Question

Action! Finding Patterns

Consolidation The Fibonacci Sequence

Learning Goal - I will be able to recognize patterns in sequences that are not strictly arithmetic or geometric.

Minds on

LGL

The 4th term of a geometric sequence is 54 and the 9th term is 13,122.

a. Determine the general term.

Find r

$$\frac{13122}{54} = 243$$

We multiplied by 243 over 5

equal 5+cp³
 $\int_{-3}^{6} = \sqrt{243}$
 $\int_{-3}^{6} = \sqrt{243}$

Find a

 $\int_{-3}^{6} = \sqrt{243}$
 $\int_{-3}^{6} = \sqrt{243}$

Minds on

LGL

The 4th term of a geometric sequence is 54 and the 9th term is 13,122.

b. Determine the 12th term.

Using 4th Term 3 12-13122 x 3

Finding Patterns

Not all patterns are arithmetic or geometric.

Some are a bit of a combination of both, some follow their own set of rules all together (see Fibonacci's sequence)

We can't always find the general term, but we should be able to create a recursive formula.

Finding Patterns

Determine the **next three terms** in the sequence 1, 8, 16, 26, 39, 56, 78 ...

Finding Patterns

Determine the **next three terms** in the sequence 1, 8, 16, 26, 39, 56, 78 ...

Finding Patterns

Determine the recursive formula of the sequence

5, 14, 41, 122, 365, 1094, 3281 ...

To get the next term, multiply the previous term by 3, then subtract 1.

Finding Patterns

Determine the **general term** of the sequence

Break up each term into its numerator and denominator.

Finding Patterns

Determine the **general term** of the sequence

$$\frac{3}{4}, \frac{5}{9}, \frac{7}{16}, \frac{9}{25}, \frac{11}{36}, \frac{13}{49}, \frac{15}{64}...$$

Top Part

 1
 2
 3
 4
 5
 6
 7

 3
 5
 7
 9
 11
 13
 15

$$\Delta = 2$$

$$t_n = 3 + (n-1)2$$

= $3 + 2n - 2$
= $2n + 1$

Finding Patterns

Determine the **general term** of the sequence

$$\frac{3}{4}, \frac{5}{9}, \frac{7}{16}, \frac{9}{25}, \frac{11}{36}, \frac{13}{49}, \frac{15}{64}...$$

Bottom Part

Finding Patterns

Determine the **general term** of the sequence

$$\frac{3}{4}, \frac{5}{9}, \frac{7}{16}, \frac{9}{25}, \frac{11}{36}, \frac{13}{49}, \frac{15}{64}...$$

$$t_{0} = \frac{2n+1}{(n+1)^{2}}$$

$$t_{7} = \frac{2(7)+1}{(7+1)^{2}}$$

$$= \frac{15}{(44)^{2}}$$

Consolidation

The Fibonacci Sequence

The Fibonacci Sequence is the series of numbers:

a. Determine the next 3 terms in the Fibonacci Sequence.

b. Determine the recursive formula for the Fibonacci Sequence.