Geometric Sequences

Definitions and Re-Definitions

Geometric Sequence: A sequence that has the same ratio, common ratio, between any pair of consecutive terms.

Examples: 4, 8, 16, 32, $64 \ldots$
2000, 1000, 500, 250, 125 ...

Recursive Sequence: A sequence for which one term (or more) is given and each successive term is determined from the previous term(s).

Examples: $\quad 4,4 \times 2,(4 \times 2) \times 2,(4 \times 2 \times 2) \times 2 \ldots$
$a, a \times r,(a \times r) \times r,(a \times r \times r) \times r \ldots$

General Term: A formula, labelled t_{n}, that expresses each term of a sequence as a function of its position. For example, if the general term is $t_{n}=2 n$, then to calculate the $12^{\text {th }}$ term $\left(t_{12}\right)$, substitute $n=12$.

Examples: $\quad t_{n}=4 \times 2^{n-1}$

$$
t_{n}=a \times r^{n-1} \text {, a represents the first term, } r \text { represents the ratio of successive terms }
$$

Recursive Formula: A formula relating the general term of a sequence to the previous term(s).
Examples: $\quad t_{1}=4, t_{n}=4 \times t_{n-1}$, where $n>1$
$\mathrm{t}_{1}=\mathrm{a}, \mathrm{t}_{\mathrm{n}}=\mathrm{r} \times \mathrm{t}_{\mathrm{n}-1}$, where $\mathrm{n}>1$

Worked Example

Determine the general term, the recursive formula, and the $10^{\text {th }}$ term in the sequence

$$
3,-12,48,-192,768 \ldots
$$

The terms in the sequence are in a ratio of -4 . Therefore this is a geometric sequence.
The formula for the general term of a geometric sequence is $\mathbf{t}_{\mathbf{n}}=\mathbf{a} \times \mathbf{r}^{\mathbf{n - 1}}$.
For this example, $a=3$ and $r=-4$.
Therefore, the general term for this example is $t_{n}=3 \times(-4)^{n-1}$.
The generalized recursive formula for a geometric sequence is $t_{1}=a, t_{n}=r t_{n-1}$, where $n>1$. Therefore, the recursive formula for this example is $\mathbf{t}_{1}=3, t_{n}=(-4) t_{n-1}$, where $n>1$.

The $10^{\text {th }}$ term in this sequence is $t_{n}=3 \times(-4)^{10-1}=3 \times(-4)^{9}=3 \times-262,144=\underline{-786,432}$

Sequence	Ratio	General Term	Recursive Formula	10
h				
$5,15,45,135 \ldots$				
$10125,6750,4500 \ldots$				
$125,50,20,8 \ldots$				
$15,-60,240 \ldots$				

