Introduction to Sequences and Series
 Arithmetic and Geometric Sequences

Definitions

Sequence: An ordered list of numbers.
Examples: $635,630,625,620,615 \ldots$
$128,64,32,16,8$...

Term: A number in a sequence. Subscripts are usually used to identify the positions of the terms.
Examples: $\mathrm{t}_{1}=635, \mathrm{t}_{2}=630, \mathrm{t}_{3}=625 \ldots$
Examples: $\mathrm{t}_{1}=128, \mathrm{t}_{2}=64, \mathrm{t}_{3}=32 \ldots$

Arithmetic Sequence: A sequence that has the same difference, the common difference, between any pair of consecutive terms.

Examples: $\quad 6,8,10,12,14 \ldots$
150, 141, 132, 123, 114 ...

Recursive Sequence: A sequence for which one term (or more) is given and each successive term is determined from the previous term(s).

$$
\begin{aligned}
\text { Examples: } & 6,6+2,(6+2)+2,(6+2+2)+2 \ldots \\
& a, a+d,(a+d)+d,(a+d+d)+d \ldots
\end{aligned}
$$

General Term: A formula, labelled t_{n}, that expresses each term of a sequence as a function of its position. For example, if the general term is $\mathrm{t}_{\mathrm{n}}=2 \mathrm{n}$, then to calculate the $12^{\text {th }}$ term $\left(\mathrm{t}_{12}\right)$, substitute $n=12$.

Examples: $\quad t_{n}=2 n+4$ OR $\quad t_{n}=6+(n-1) 2$
$\mathbf{t}_{\mathbf{n}}=\mathbf{a + (n - 1) d}$, a represents the first term, d represents the difference between successive terms

Recursive Formula: A formula relating the general term of a sequence to the previous term(s).

$$
\begin{array}{ll}
\text { Examples: } & t_{1}=6, t_{n}=t_{n-1}+2, \text { where } n>1 \\
& t_{1}=a, t_{n}=t_{n-1}+d, \text { where } n>1
\end{array}
$$

Examples

1. Decide whether the given sequence is algebraic. Then, determine the general term and the recursive formula for the sequence. Use your formulae to determine the $10^{\text {th }}$ term of the sequence.
a. $6,15,24,33,42$...

The terms in the sequence increase by 9 , therefore this is an arithmetic sequence.
The formula for the general term of an arithmetic sequence is $\mathbf{t}_{\mathrm{n}}=\mathbf{a +}(\mathrm{n}-1) \mathbf{d}$.
For this example, $\mathrm{a}=6$ and $\mathrm{d}=9$.
Therefore, the general term for this example is $t_{n}=\mathbf{6 + (n - 1) 9}$ OR $t_{n}=9 n-\mathbf{3}$
The generalized recursive formula for an arithmetic sequence is $t_{1}=a, t_{n}=t_{n-1}+d$, where $n>1$. Therefore, the recursive formula for this example is $\mathbf{t}_{1}=6, t_{n}=t_{n-1}+9$, where $\mathbf{n}>\mathbf{1}$.

The $10^{\text {th }}$ term in this sequence is $\mathrm{t}_{\mathrm{n}}=6+((10)-1) 9=6+(9) 9=6+81=\underline{87}$.

Sequence	General Term	Expanded General Term	Recursive Formula	$10^{\text {th }}$ Term
$1,5,9,13,17 \ldots$				
$8,11,14,17,20 \ldots$				
$28,19,10,1,-8 \ldots$				
$784,588,392 \ldots$				

