What's Going On?

Checking In

Minds on The Sine Law

Action! Bird Watching

Consolidation A Few Examples

Learning Goal - I will be able to use The Sine Law to solve problems and I will understand 'The Ambiguous Case'

L.G.L.

Prove the identity below.

$$\frac{\sin^2 \phi}{1 - \cos \phi} = 1 + \cos \phi$$

$$\frac{\int_{-\infty}^{\infty} \frac{1}{\sqrt{1 - \cos \phi}}}{\int_{-\infty}^{\infty} \frac{1}{\sqrt{1 - \cos \phi}}} = 1 + \cos \phi$$

$$\frac{\int_{-\infty}^{\infty} \frac{1}{\sqrt{1 - \cos \phi}}}{\int_{-\infty}^{\infty} \frac{1}{\sqrt{1 - \cos \phi}}} = 1 + \cos \phi$$

$$= \frac{1 - \cos \phi}{1 - \cos \phi} = 1 + \cos \phi$$

$$= \frac{1 + \cos \phi}{1 - \cos \phi} = 1 + \cos \phi$$

$$= \frac{1 + \cos \phi}{1 - \cos \phi} = 1 + \cos \phi$$

$$= \frac{1 + \cos \phi}{1 - \cos \phi} = 1 + \cos \phi$$

$$= \frac{1 + \cos \phi}{1 - \cos \phi} = 1 + \cos \phi$$

Minds on

The Sine Law

Minds on

The Sine Law

Used for NON-right triangles when we know

- two sides and an angle
- two angles and a side

*You must have one complete ratio.

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Minds on

The Sine Law

Determine the measure of angle x.

Minds on

The Sine Law

Determine the measure of side x.

Action!

Bird Watching

Miss. Humphries and Mr. Gilbert have spotted a Rose-breasted Grosbeak up in a tree.

The distance from Miss. Humphries to the bird is 7.8 m and the distance from Mr. Gilbert to the bird is 5.9 m. If the angle of elevation from Miss. Humphries to the bird is 36°, what is the distance between Miss. Humphries and Mr. Gilbert?

They are 2.6 m/10.0 m apart!...?

12

A situation in which 0, 1 or 2 triangles can be drawn given the information in a problem.

This occurs when you know two side lengths and an angle *opposite* one of the sides.

If the angle is acute, 0, 1 or 2 triangles are possible. If the given angle is obtuse, 0 or 1 triangles are possible.

Acute - 2 Possibilities

*must be greater than height of triangle

2 is equal to the height

Acute - 1 Possibility

2 is longer than 1

Acute - 0 Possibilities

2 is too short

(less than height of triangle)

Obtuse - 1 Possibility

2 is longer than 1

Obtuse - 0 Possibilities

2 is shorter than 1 or equal to 1

Consolidation

A Few Examples