What's Going On?

Checking In

Minds on Identities you know

Action! Identities you don't

Consolidation Simplifying and Proving by Factoring

Learning Goal - I will be able to prove trigonometric identities

L.G.L.

If $\sin \theta = -0.8190$ and θ is between 0° and 360° , determine all possible values of θ to the nearest degree.

$$5 \text{ in } \beta = 0.8190$$
 $\beta = 55^{\circ}$
 $9-235^{\circ}$ and 305°

Minds on

Identities

An identity is a mathematical statement that is true for all values of the given variables.

If the identity involves fractions, the denominators cannot be zero. Any restrictions on a variable must be stated.

Minds on

Identities You Know

Reciprocal Identities

$$\csc \theta = \frac{1}{\cos \theta} \qquad \sec \theta = \frac{1}{\sin \theta} \qquad \cot \theta = \frac{1}{\tan \theta}$$

We'll accept these as definitions.

Minds on

Identities You Know

The Basic "Identities"

$$\sin \theta = \frac{y}{r}$$
 $\cos \theta = \frac{x}{r}$ $\tan \theta = \frac{y}{x}$

We'll accept these as definitions.

Action!

Identities You Don't

Quotient Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Everything in mathematics is built upon a relatively small set of definitions.

Anything that is then introduced must be proven to be accepted.

Prove it!

Trig Identities

April 23, 2015

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$= \frac{1}{2}$$

$$= \frac{$$

Action!

Identities You Don't

Quotient Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Your Turn!

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\frac{\angle 1.5.}{\cot \theta}$$

$$= \frac{1}{\cot \theta}$$

Action!

Identities You Don't

Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$

Prove it!

* $\sin^2\theta$ is just ($\sin\theta$)²

$$\sin^2\theta + \cos^2\theta = 1$$

$$\frac{L.S.}{\sin^2\theta + \cos^2\theta}$$

$$= \left(\frac{y}{r}\right)^2 + \left(\frac{x}{r}\right)^2$$

$$= \frac{y^2}{r^2} + \frac{x^2}{r^2}$$

$$= \frac{x^2 + y^2}{r^2}$$

$$= \frac{x}{r^2} + \frac{x}{r^2}$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\cos^2\theta = |-\cos^2\theta|$$

$$\cos^2\theta = |-\sin^2\theta|$$

Action!

Identities You Don't

Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

Prove it!

$$1 + \tan^{2}\theta = \sec^{2}\theta$$

$$\frac{L.S.}{1 + \tan^{2}\theta}$$

$$= \left(+ \frac{\sin^{2}\theta}{\cos^{2}\theta} \right)$$

$$= \frac{\cos^{2}\theta}{\cos^{2}\theta} + \frac{\sin^{2}\theta}{\cos^{2}\theta}$$

$$= \frac{\sin^{2}\theta}{\cos^$$

Action!

Identities You Don't

Pythagorean Identities

$$\sin^2\theta + \cos^2\theta = 1$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

Your Turn!

$$1 + \cot^{2}\theta = \csc^{2}\theta$$

$$\frac{1}{5} \cdot \frac{1}{5} \cdot \frac{$$

$$= \frac{\sin^2\theta + \cos^2\theta}{\sin^2\theta}$$

$$= \frac{\sin^2\theta + \cos^2\theta}{\sin^2\theta}$$

$$= \frac{1}{\sin^2\theta} \text{ by happen Therrity}$$

Consolidation

Simplifying Trigonometric Expressions

Often, when proving an identity, our first step is to simplify a complicated expression into something less complex.

Typically, we rewrite any reciprocal ratios and ratios involving tangent, as sine and cosine.

Simplify

a)
$$1 + \cot^{2}\theta$$

$$= | + \frac{1}{\tan^{2}\theta}$$

$$= | + \frac{1}{\sin^{2}\theta}$$

$$= | + \frac{\cos^{2}\theta}{\sin^{2}\theta}$$

$$= \frac{\sin^{2}\theta}{\sin^{2}\theta} + \frac{\cos^{2}\theta}{\sin^{2}\theta}$$

$$= \frac{1}{\sin^{2}\theta} + \frac{\cos^{2}\theta}{\sin^{2}\theta}$$

Trig Identities

c)
$$(1-\cos\theta)(1+\cos\theta)$$

$$= |+\cos\theta| + \cos\theta$$

$$= |-\cos^2\theta|$$

$$= |-\cos^2\theta| + \cos\theta$$

Trig Identities

April 23, 2015

d)
$$\frac{\sin^2\theta - \cos^2\theta}{\sin\theta - \cos\theta}$$

$$= \frac{(5in0+cos0)}{(5in0-cos0)}$$

Consolidation

Proving by Factoring

Sometimes when proving an identity, it is necessary to factor a given expression.

Common Factor

$$\sin\theta\cos\theta + \sin\theta$$

$$= 5100 \left(\cos\theta + 1 \right)$$

$$=$$
tan θ (tan θ - $\sin\theta$)

Difference of Squares
$$\sin^2 \theta - \tan^2 \theta$$

$$= (5' + \tan \theta)(5' + \tan \theta)$$

$$\widehat{1 - \sin^2 \theta}$$

$$= (1 + \sin \theta)(1 - \sin \theta)$$

Trig Identities

$$\frac{2 \cdot 5}{1 + \sin \theta} = \frac{\sin \theta + \sin^2 \theta}{(\cos \theta)(1 + \sin \theta)}$$

$$= \frac{\sin \theta + \sin^2 \theta}{(\cos \theta)(1 + \sin \theta)}$$

$$= \frac{\sin \theta + \sin^2 \theta}{(\cos \theta)(1 + \sin \theta)}$$

$$= \frac{\sin \theta + \sin^2 \theta}{(\cos \theta)(1 + \sin \theta)}$$

$$= \frac{\sin \theta + \sin^2 \theta}{(\cos \theta)(1 + \sin \theta)}$$

$$= \frac{\sin \theta + \sin^2 \theta}{(\cos \theta)(1 + \sin \theta)}$$

Homework Change

1 - 8