What's Going On?

Checking In Weekend Assignment

Minds on How Many Zeros?

Action! The Discriminant, a and k

Consolidation TIPS

Learning Goal - I will be able to use the discriminant to determine the number of roots.

Checking In

LGL

Please do this before you RAFT

Find the zeros of the function $f(x) = (3x - 1) + \frac{1}{x + 1}$. Wenced a comor denominator.

$$f(x) = \frac{(x+1)^{1}(3x-1)}{(x+1)^{1}} + \frac{1}{(x+1)}$$

$$f(x) = \frac{(x+1)(3x-1)+1}{(x+1)}$$

$$f(x) = \frac{(x+1)(3x-1)+1}{(x+1)}$$

$$f(1) = \frac{3x^2 - x + 3x^2 - 1 + 1}{(x + 1)}$$

$$f(1) = \frac{3x^2 + 2x}{(x + 1)}$$

$$f(x) = \frac{3x^2 + 2x}{(x+1)}$$

Zeros.... set
$$f(x) = 0$$
 and solve
$$\frac{3x^2 + 2x}{(x+1)} = 0$$

Zeros... set f(x) = 0 and solve $\begin{array}{l}
3x^2 + 2x = 0 \\
3x^2 + 2x = 0
\end{array}$ $\begin{array}{l}
3x^2 + 2x = 0 \\
4x + 2x = 0
\end{array}$ $\begin{array}{l}
3x + 2x = 0 \\
4x + 2 = 0
\end{array}$ $\begin{array}{l}
4x + 2 = 0 \\
4x + 2 = 0
\end{array}$ $\begin{array}{l}
4x + 2 = 0 \\
4x + 2 = 0
\end{array}$

Checking In

Weekend Assignment Due today*

Unit Test

Next Next Thursday

Minds on

How many zeros?

For each quadratic equation, determine the number of zeros / x-intercepts.

$f_1(x) = 2x^2 + 6x - 8$	2
$f_2(x) = -2x^2 + 12x - 18$	
$f_3(x) = x^2 - 4x + 7$	
$g_1(x) = -(x-4)^2 + 1$	2
$g_2(x) = -4\left(x+3\right)^2$	
$g_3(x) = -3(x-1)^2 - 6$	

Minds on

How many zeros?

We can have:

two distinct roots
two equal roots
no real roots

Two Distinct Roots

Two Equal Roots

(Double Root)

No "Real" Roots

How many zeros?

How can we discriminate between quadratics with two equal roots and no equal roots using The Quadratic Formula?

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

two <u>distinct</u> roots	two <u>equal</u> roots	<u>no real</u> roots
12-4al 70	624ac=0	12-4ac<0

How many zeros?

How can we discriminate between quadratics with two distinct roots, two equal roots and no equal roots using

The Quadratic Formula?

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

We use the discriminate

How many zeros?

How can we discriminate between quadratics with two distinct roots, two equal roots and no equal roots using

The Quadratic Formula?

We use the <u>discriminant</u> $b^2 - 4ac$

The Discriminant

$$b^2-4ac$$

two distinct roots

The discriminant is

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The Discriminant

$$b^2-4ac$$

two equal roots

The discriminant is —

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The Discriminant

$$b^2-4ac$$

no real roots

The discriminant is

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

How many zeros?

Given Vertex Form

$$f(x) = a(x-h)^2 + k$$

How can we determine the number of zeros a quadratic has given its vertex form equation?

Minds on

How many zeros?

For each quadratic equation, determine the number of zeros / x-intercepts.

$f_1(x) = 2x^2 + 6x - 8$	2
$f_2(x) = -2x^2 + 12x - 18$	
$f_3(x) = x^2 - 4x + 7$	
$g_1(x) = -(x-4)^2 + 1$	2
$g_2(x) = -4\left(x+3\right)^2$	
$g_3(x) = -3(x-1)^2 - 6$	

How many zeros?

For each quadratic equation, determine the number of zeros / x-intercepts.

$$f_{1}(x) = 2x^{2} + 6x - 8$$

$$b^{2} - 4ac = 6^{2} - 4(2)(-8)$$

$$= 36 + 64$$

$$= 100 + 400 \text{ kisting of states}$$

$$f_{2}(x) = -2x^{2} + 12x - 18$$

$$\int_{2}^{2} -4aC = |2^{2} - 4(-2)(-4)|$$

$$= |44 - |44| + |44| + |44|$$

$$f_{3}(x) = x^{2} - 4x + 7$$

$$\int_{2}^{2} -4aC = (-4)^{2} - |4(1)(7)|$$

$$= |b - 26| + |64| + |64|$$

$$= -|2|$$

TIPS *NOT IN YOUR NOTE!*

Determine the value of *k* so that the quadratic function below has only one zero.

$$f(x) = x^2 - kx + 3$$

TIPS

Show that $(x^2 - 1)k = (x - 1)^2$ has one solution for only one value of k.

TIPS

For what values of k does the function $f(x) = (k+1)x^2 + 2kx + k - 1$ have no zeros? One zero? Two zeros?

Test 1

Test 1

