First, it's handy to know what each of our parent functions looks like in this form:

$$
\begin{array}{c|c}
\text { Quadratic: } f(x)=x^{2} & \text { Square Root: } f(x)=\sqrt{x} \\
\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a}[\boldsymbol{k}(\boldsymbol{x}-\boldsymbol{d})]^{2}+\boldsymbol{c} & \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a} \sqrt{\boldsymbol{k}(\boldsymbol{x}-\boldsymbol{d})}+\boldsymbol{c} \\
\text { Reciprocal: } f(x)=\frac{1}{x} & \text { Absolute Value: } f(x)=|x| \\
\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a}\left(\frac{1}{\boldsymbol{k}(\boldsymbol{x}-\boldsymbol{d})}\right)+\boldsymbol{c} & \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a}|\boldsymbol{k}(\boldsymbol{x}-\boldsymbol{d})|+\boldsymbol{c}
\end{array}
$$

We also need to understand what each of our parameters ($\boldsymbol{a}, \boldsymbol{k}, \boldsymbol{d}$ and \boldsymbol{c}) do.
You should already have a pretty good grasp on $\boldsymbol{a}, \boldsymbol{d}$ and \boldsymbol{c} from Grade 10. Although \boldsymbol{d} and \boldsymbol{c} were represented by different letters, the roles that they play have not changed!
And if you understand what \boldsymbol{a} does, figuring out \boldsymbol{k} should be no problem at all!

The effects of the parameters $\boldsymbol{a}, \boldsymbol{k}, \boldsymbol{d}$ and \boldsymbol{c}	
a: reflection in the x-axis - when a is negative vertical stretch or compression - stretch when $\|a\|>1$ - compression when $\|a\|<1$	\mathbf{k} : reflection in the y-axis* - when k is negative horizontal stretch or compression - compression when $\|\mathrm{k}\|>1$ - stretch when $\|\mathrm{k}\|<1$ *If already symmetrical about y-axis, reflection does nothing!
C: vertical translation - up when c is positive - down when c is negative	d: horizontal translation - to the right when d is positive - to the left when d is negative

As you likely already understand, if we have several parameters applied to our function at once it may experience changes in shape, orientation and location!

Applying Transformations to a Graph (see Example 1 on Page 61-63)

The order that you apply transformations to a parent function is important.
Always apply \boldsymbol{a} and \boldsymbol{k} before \boldsymbol{c} and \boldsymbol{d} !
From a table of values or a graph (it will be helpful to create a table of values)

1. Apply any horizontal stretches or compressions.

- Divide the x-coordinates of your original points by the value of \boldsymbol{k}

2. Apply any vertical stretches or compressions.

- Multiply the y-coordinates of your "new" points by the value of \boldsymbol{a}

3. Apply any reflections in the \mathbf{x}-axis or \mathbf{y}-axis

- Flip graph over the \boldsymbol{y}-axis if \boldsymbol{k} is negative. (change the sign on your "new" x-coordinates)
- Flip graph over the x-axis if \boldsymbol{a} is negative. (change the sign on your "new" y-coordinates)

4. Apply any horizontal shifts.

- Shift the graph to the right if \boldsymbol{d} is positive or to the left if \boldsymbol{d} is negative.
- Add \boldsymbol{d} to each x-coordinate if \boldsymbol{d} is positive
- Subtract \boldsymbol{d} from each x-coordinate if \boldsymbol{d} is negative

5. Apply any vertical shifts.

- Shift the graph up if \boldsymbol{c} is positive or down if \boldsymbol{c} is negative.
- Add \boldsymbol{c} to each y-coordinate if \boldsymbol{c} is positive
- Subtract \boldsymbol{c} from each y -coordinate if \boldsymbol{c} is negative

Applying Transformations to an Equation (see Example 2 on Page 64-65)

The key to this is simply identifying the value of each parameter.
If you are told to apply:

- A horizontal stretch by a factor of $3 ; \boldsymbol{k}=\frac{1}{3}$.

- A horizontal compression by a factor of $\frac{1}{3} ; \boldsymbol{k}=3$.

This is why we divide our x-coordinates by the value of \boldsymbol{k} !

- A vertical stretch by a factor of $5 ; \boldsymbol{a}=5$.
- A vertical compression by a factor of $\frac{1}{5}$; $\boldsymbol{a}=\frac{1}{5}$.
- A reflection in the y-axis; \boldsymbol{k} is negative.
- A reflection in the x-axis; \boldsymbol{a} is negative.
- A translation 2 units up and 3 units left; $\boldsymbol{c}=2$ and $\boldsymbol{d}=-3$.
- A translation 1 unit down and 4 units right; $\boldsymbol{c}=-1$ and $\boldsymbol{d}=4$

