What's Going On?

Checking In Homework Logs

Minds on Even More Tables of Values

Action! a vs. k

Consolidation Tell Me About Myself

Learning Goal - I will understand the effects of our final parameter, k, on our parent functions.

Checking In

Pre R.A.F.T.

Use a red pen and correct yesterday's FFM question.

Determine the inverse of the given function.

$$h(x) = 3\sqrt{x+1} - 4$$
Let $y = h(x)$

$$y = 3\sqrt{x+1} - 4$$
Solve for y

$$x = 3\sqrt{y+1} - 4$$
Solve for y

$$x = 3\sqrt{y+1} - 4$$

$$x+4 = 3\sqrt{y+1}$$

$$y = (x+4)^{2}$$

$$y+1 = (x+4)^{2}$$

$$y = (x+4)^{2}$$

$$y = (x+4)^{2}$$

Checking In

R.A.F.T.

Checking In

A "New" Term!

An <u>invariant point</u> is a point on a graph that is unchanged by a transformation.

Minds on

Even More Tables of Values

$$f(x) = x^{2} \qquad g(x) = 2x^{2} \qquad h(x) = (2x)^{2}$$

$$\begin{array}{c|ccccc} x & y & & x & y \\ \hline -4 & 16 & & -4 & 32 & & -4 & 64 \\ -2 & 4 & & -2 & 6 & & -2 & 16 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 4 & 16 & & 4 & 36 & & 4 & 64 \\ \end{array}$$

$$f(x) = x^2$$

$$h(x) = (2x)^2$$

X	У
-4	16
-2	4
0	0
2	4
4	16

So to apply k, we multiply the y-values by k^2 ?

Or is it 2*k*?

a vs. k

So to apply **k**, we multiply the y-values by **k**²?

Or is it 2*k*?

$$f(x) = x^2$$
 $h(x) = (2x)^2$
 $j(x) = (4x)^2$
 x
 y
 x
 y
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4
 -4

Looks like k²! But wait a second!!!! Only the quadratic function family has an exponent of 2... what would happen to the other parent functions?

all aboot **k**

$$f(x) = |x|$$
 $h(x) = |2x|$
 $j(x) = |4x|$

 X
 Y
 X
 Y

 -4
 4
 -4
 16

 -2
 2
 4
 -2
 8

 0
 0
 0
 0
 0

 2
 2
 4
 2
 8

 4
 4
 8
 4
 16

Well now we just seem to multiply the original y-values by k... I would have thought that k affected each parent function the same way, kind of like a, d, and c each do a specific thing. Let's try one more thing!

all aboot **k**

This time, instead of keeping the same x-values, let's **figure out the x-values** if the y-values don't change! We already know that **d** affects the x-values, maybe **k** does too.

$f(x) = x^2$			$h(x) = (2x)^2$		$j(x) = (4x)^2$		
X	У	_	X	У		X	у ,
-4	16		-2	16		-1	16
-2	4		-1	4		-0.5	4
0	0		0	0		0	0
2	4		1	4		0.5	4 /
4	16		2	16		1	16

*Careful! You'll be solving square roots here... what's the square root of 4?

all aboot **k**

So.... what does k do?!

The Effects of **k**

a changes the y-values

(multiply the y-values of the parent function by a!)

k changes the x-values
(divide the x-values of the parent function by k!)

Notice:

When a is 2, the y-values double.

When **k** is 2, the x-values halve.

$$g(x) = af(kx - d) + c$$

This function describes a transformation of the graph of f.

$$f(x)$$
 can be: $f(x) = x^2$, $f(x) = |x|$,

$$f(x) = \frac{1}{x}, \qquad f(x) = \sqrt{x}$$

- a: vertical stretch or compression
 - stretch when |a| > 1
 - compression when |a| < 1

reflection in the x-axis when a is negative (MULTIPLY THE Y-VALUES OF PARENT FUNCTION BYa)

- k: horizontal stretch or compression
 - compression when $|\mathbf{k}| > 1$
 - stretch when $|\mathbf{k}| < 1$

reflection in the y-axis when k is negative (DIVIDE THE X-VALUES OF PARENT FUNCTION BY k)

$$g(x) = af(kx - d) + c$$

This function describes a transformation of the graph of f.

$$f(x) = x^2$$

$$f(x)$$
 can be: $f(x) = x^2$, $f(x) = |x|$,

$$f(x) = \frac{1}{x}, \qquad f(x) = \sqrt{x}$$

d: horizontal translation

- to the right when **d** is positive
- to the left when **d** is negative

(ADD d TO THE X-VALUES OF THE PARENT FUNCTION)

c: vertical translation

- up when c is positive
- down when **c** is negative

(ADD c TO THE Y-VALUES OF THE PARENT FUNCTION)

Consolidation

Homework!

gilbertmath.com