\qquad

Grade 10 Quadratics Review Self-Test

1. Determine the y-intercept for the following equation: $\boldsymbol{y}=-\mathbf{3}(\boldsymbol{x}-\mathbf{4})^{\mathbf{2}}+\mathbf{1 0 0}$
2. Clearly explain in words ALL of the transformations that must be applied to $\boldsymbol{y}=\boldsymbol{x}^{2}$ to obtain the graph of the function below (point form is fine...)

$$
y=-\frac{1}{4}(x+6)^{2}+12
$$

3. Sketch each quadratic and fill in the blanks below

Vertex: \qquad
Axis of Symmetry: \qquad
x-Intercepts: \qquad
y-Intercept: \qquad

Vertex: \qquad
Axis of Symmetry: \qquad
Max / Min: \qquad
Range: \qquad

Vertex: \qquad
Axis of Symmetry: \qquad
Step Pattern ($1^{\text {st }} 3$ steps): \qquad
Domain: \qquad
4. For each quadratic equation below, determine the zeros by factoring, then determine the vertex of the graph of the equation algebraically.

a. $x^{2}-11 x+24=0$	b. $-\frac{1}{2} x^{2}-4 x=-10$
Zeros:	Zeros:
Vertex:	Vertex:
c. $x^{2}+6 x-27=0$	d. $x^{2}-6 x+9=0$
Zeros:	Zeros:
Vertex:	Vertex:
e. $x^{2}-11 x=0$	f. $x^{2}+12 x+36=0$
Zeros:	Zeros:
Vertex:	Vertex:
g. $-5 x^{2}-40 x=0$	h. $2 x^{2}+2 x=24$
Zeros:	Zeros:
Vertex:	Vertex:

5. Complete the table below for each relation:

Use this space to work out your answers for \#5.

6. Sideshow Bob fires a cannon hurtling Krusty the Clown through the air.

Krusty's path can be modelled by the equation $\boldsymbol{h}=-\mathbf{8} \boldsymbol{t}^{\mathbf{2}}+\mathbf{4 0 0} \boldsymbol{t}$, where \boldsymbol{t} is the time in seconds and \boldsymbol{h} is the height of Krusty above the ground in metres.
a) Create a rough sketch of Krusty's parabolic flight.
(label the vertex, the y-intercept, and show how you obtained them)

b) What is the maximum height reached by Krusty? \qquad m
c) After how long does Krusty reach his maximum height? \qquad S
d) How many seconds will it take for Krusty to land back on the ground? \qquad S
7. In 1993, Joe Carter hit a homerun over the left field wall at the SkyDome in the bottom of the $9^{\text {th }}$ to give the Blue Jays, and Canada, an unprecedented two World Series Championships in a row! It was amazing; I was 10.
The function $\boldsymbol{h}=-\mathbf{0 . 0 0 1} \boldsymbol{d}^{\mathbf{2}}+\mathbf{0} .4 \boldsymbol{d}+\mathbf{3}$ models the height, h feet, of Joe's ball as a function of the distance travelled, d feet, from home plate.
a) How high above the ground did Joe make contact with the ball? \qquad ft .
b) What was the height of the ball as it sailed over the wall 325 feet from home plate? \qquad ft .
c) How far from home plate was the ball when it began to fall back to the ground? \qquad ft .
d) What was the height of the ball when it began to fall back to the ground? \qquad ft .
e) How far from home plate would the ball have hit the ground? \qquad ft.
(Assume the ball lands on the ground)
f) Approximately how many feet did the ball travel at a height of at least 30 feet? \qquad ft.
g) Draw and label a rough sketch of the situation.

Include: zeros, vertex, y-intercept, axis of symmetry, points at which ball was 30 feet above the ground, home plate, the outfield wall, height of the ball as it sailed over the wall.

