What's Going On?

Checking In

Minds on What's my Domain and Range?

Action! What's my actual Domain and Range?

Consolidation Domain and Range of Functions

Learning Goal - I will be able to determine the domain and range of relations and functions from graphs and equations.

What's happening at

gilbertmath.com?

Checking In

Finishing Up Yesterday

Linear Function

- it's a line!
- goes through the origin
- slope of 1 (m)
- y-intercept of 0 (b)
- x-intercept of 0
- y=mx+b form is y = 1x + 0

Quadratic Function

$$f(x) = x^2$$

- it's a parabola
- opens up
- vertex at (0, 0)
- step pattern is 1, 3, 5, 7, ...
- x and y-intercepts are both 0

- in vertex form
$$y=a(x - h)^2 + k$$
 $y=x$ $y=x$ $y=x$ $y=x$ $y=x$ $y=x$ $y=x$ $y=x$

- the curve has not been stretched or compressed
- has a minimum but no maximum

Get it?

Square Root Function

- starts at (0,0)
- x is always positive or O
- y is always positive or O
- when x = 1, y = 1
- increasing from left to right
- growth slows down

Reciprocal Function

- two asymptotes (the x-axis and the y-axis
 - x = 0 and y = 0
- When x is POSITIVE
 - as |x| increases, f(x) decreases (approaches zero)
 - as |x| decreases, f(x) increases (approaches infinity)
- When x is NEGATIVE
 - as |x| increases, f(x) decreases (approaches zero)
- as |x| decreases, f(x) increases (approaches negative infinity)

Absolute Value Function

What's my Domain and Range?

The <u>domain</u> of a relation is the set of

all values of the independent variable.

(all possible x-values)

The <u>range</u> of a relation is the set of all values of the dependent variable.

(all possible y-values)

What's my Domain and Range?

$$f(x) = x$$

Domain

anything of everything

Range

anything of everything

What's my Domain and Range?

$$f(x) = x^2$$

Domain

anything + everythmy

mything O or greater

Range

What's my Domain and Range?

$$f(x) = \sqrt{x}$$

Domain

Anything Oor greater

Range

Anything Oor greater

What's my Domain and Range?

$$f(x) = \frac{1}{x}$$

Domain

Anything except 0

Range

Anything except 0

What's my Domain and Range?

$$f(x) = |x|$$

Domain

mything + coeffining

Range

anything Dorgreater

Domain and Range

First, number systems!

Real Numbers:

Numbers that are either rational or irrational; these include positive and negative integers, zero, fractions, and irrational numbers such as $\sqrt{2}$ and π .

Real numbers are either Rational or Irrational

An irrational number is any number that CANNOT be represented as a fraction of two integers.

Rational Numbers include all *integer fractions*, integers, whole numbers and natural numbers.

All natural numbers are whole numbers.

All whole numbers are integers.

All integers are rational.

Set Notation

What's my **actual** Domain and Range?

$$f(x) = x$$

Domain "anything and everything"

"x is a member of the real numbers... no restrictions!"

Range "anything and everything"

"f of x is a member of the real numbers... no restrictions!"

What's my actual Domain and Range?

$$f(x) = x^2$$

Domain "anything and everything"

 $\{x \in \mathbb{R}\}$

"x is a member of the real numbers... no restrictions!"

Range "anything 0 or greater"

 $S_{\xi(x)} \subset \mathbb{R} |f(x)| > 0$

"f of x is a member of the real numbers, and it is always greater than or equal to zero."

What's my actual Domain and Range?

Domain "anything 0 or greater"

"x is a member of the real numbers, and it is always greater than 0."

Range "anything 0 or greater"

 $f(x) \in \mathbb{R} / f(x) 7/03$

"f of x is a member of the real numbers, and it is always greater than or equal to zero."

What's my actual Domain and Range?

$$f(x) = \frac{1}{x}$$

Domain "anything except zero"

"x is a member of the real numbers, but it's not zero."

"f of x is a member of the real numbers, but it's not zero."

What's my actual Domain and Range?

$$f(x) = |x|$$

Domain "anything and everything"

$$\{x \in \mathbb{R}\}$$

"x is a member of the real numbers, no restrictions."

Range "anything 0 or greater"

 $Sf(x) \in \mathbb{R} \left\{ f(x) > 0 \right\}$

"F of x is a member of the real numbers, and it is always greater than or equal to zero."

Domain and Range

In this example, we don't actually have a line, we just have individual points. So, we just write the domain and range as a list of values.

Domain and Range

In this graph, we have a situation where y is 6 when x is greater than -5 and less than or equal to 5. When x is greater than 5, and less than or equal to 10, y is 2.

Domain and Range

Range: f of x is a real number, and it is always less than or equal to 3. This is because the vertex is at 3 and the graph decreases.

Domain and Range

For the domain, x is anything between -3 and 3 (including both 3 and -3)

For the range, f(x) is anything between -3 and 3 (including both 3 and -3)

In this case, x is anything between -3 and 3 and this time, it doesn't include 3!

The range in this case is anything between -3 and 3 INCLUDING both! BUT notice that the graph doesn't exist when f(x) = 0.

Domain and Range

a)
$$f(x) = 2x - 3$$

Function?

Oh yeah! It's a line:)

Parent Function:

$$f(x) = x$$
 of course

anything!

Range =

anything!

Domain and Range

b)
$$g(x) = -3(x + 1)^2 + 6$$

Function?

yep! It's a quadratic!

Parent Function:

$$y = x^2$$
Domain = $\{x \in \mathbb{R}\}$

Well... it's a parabola, so it continues forever in both directions.

Range =
$$\{f(x) \in \mathbb{R} \mid f(x) \leq 6\}$$

Well... its a-value is -3, so it's been flipped upside down. Also, its k-value is +6 so its vertex is up at 6. This means it starts at 6 and goes down forever.

Domain and Range

c)
$$h(x) = \sqrt{x+5}$$

Function?

Yep! It's a square root function.

Parent Function:

Domain =

Hmm.... I know that the domain of the parent function is $x \ge 0$. But this isn't quite the same... I also know that we can't take the root of a negative number. So this means that x+5 has to be greater than or equal to 0.

Maybe I'll write that as an equation and solve for x.

So the domain is $\{x \in \mathbb{R} \mid x \neq -5\}$

Range =

Hmm... well since x is greater than or equal to -5. Our lowest y-value will be the square root of (x+5) or (-5+5) which is 0. Then the y-values just increase!

So just like the parent function, the range is:

$$\{f(x) \in R \mid f(x) \geq 0\}$$

Homework!

gilbertmath.com