What's Going On?

Checking In Diagnosing Your Problems

Minds on Functions and Relations

Action! Function or Not?

Consolidation Hey equation, are you a function?

Learning Goal - I will be able to determine if a relation is a function from its mapping diagram, graph, table or equation.

Checking In

Diagnosing Your Problems

Please have last night's homework out.

Don't bring it to me.

I will come around and collect it.

This way I can easily tell who hasn't handed it in.

Unfinished Business

Functions and Relations - A Few Terms

A <u>relation</u> is a set of ordered pairs where values of the independent variable are paired with values of the dependent variable.

The <u>domain</u> of a relation is the set of all values of the independent variable.

The <u>range</u> of a relation is the set of all values of the dependent variable.

Domain, Range and Set Notation

Domain = $\{-1, 0, 1, 2\}$

Range = $\{-3, 1, 5, 9\}$

Set: {(-1, -3), (0, 1), (1, 5), (2, 9)}

Domain, Range and Set Notation

Functions and Relations

A function is a special relation.

On the next slide I will show you some examples of functions and some examples of non-functions.

Mapping Diagrams

In a mapping diagram the independent variable is always "mapped onto" the dependent variable"

Functions

Non-Functions

Functions and Relations

A function is a special relation.

Specifically, a <u>function</u> is a relation where each value of the independent variable corresponds with <u>only one</u> value of the dependent variable.

That's Funny!

'Olive' the functions that exist are relations!

But... 'olive' the relations that exist are *not* functions.

Action! Function or Not?

Action!

Function or Not?

X	У
-1	5
0	5
1	5
2	5

X	У
-2	3
-1	0
0	-1
1	0
2	3

X	У
-1	-3
0	1
1	5
2	9

X	У
21	1
22	0
45	5

Action! Function or Not?

A function is a relation where each x-value value of the independent variable

corresponds with only one yulue value of the dependent variable

*NOTE: We will not <u>always</u> be using 'x' and 'y'. I use them for this example only because you are used to creating tables of values and graphs with x as the independent variable and y as the dependent variable.

Action!

Function or Not?

X	у
-2.5	-1
-2.5	0
-2.5	-2
-2.5	-3

X	у
6	5
8	4
9	4.5
11	5

X	У
0	3
2	0
5	-1

X	у
1	5
1	7
2	3
7	8

Action! Function or Not?

Action!

A function is a relation where each value of the independent variable corresponds with **only one** value of the dependent variable.

OR

A function is a relation where each **x-value**

corresponds with only one y-value

The Vertical-Line Test

We can use what is called the <u>vertical-line test</u> to determine if the graph of a particular relation is a function.

If any vertical line intersects the graph of a relation <u>more than once</u>, then the relation is <u>not a function</u>.

Action! Function or Not?

Action!

Function or Not?

-slope is 2 y = 2x - 5- initial value is - 5 (y-itarcept)

$$x^{2} + y^{2} = 9 - Circle$$

$$x^{2} + y^{2} = 9 - Circle$$

$$- (Abius is 3)$$

$$y = 2x^{2} - 3x + 1 - 9 + -int = 1$$

$$\Rightarrow \rho A a box$$

Hey equation, are you a function?

We've figured out how to tell if a relation is a function from its mapping diagram, table of values and graph.

How can we determine if a relation is a function from its equation?

Hey equation, are you a function?

Linear Relations: y = mx + b or Ax + By = C

Quadratic relations:

Vertical Parabola

$= a(x-h)^2 + k$ $x = a(y-h)^2 + k$

$$x = a(y-n) + \kappa$$
$$x = a(y-s)(y-t)$$

 $x = ay^2 + by + c$

Horizontal Parabola

rcle Relations:

$$x^{2} + y^{2} = r^{2}$$
$$y = \pm \sqrt{r^{2} - x^{2}}$$

Hey equation, are you a function?

Basically:

- If it's a linear equation, it's a function
- If it's a quadratic relation in terms of y (y =) it's a function
- If it's a quadratic relation in terms of x (x =) it's **NOT** a function
- If it's a circle it's **NOT** a function

If you can find two y-values that give the same x-value it's NOT a function!

Function

Relation

Domain

Range

Vertical Line Test

Homework!

gilbertmath.com