Learning Goal: I will be able to solve logarithmic equations.

Minds On: Whiteboards - re-write it!

Action: Solving Logarithmic Equations - note and examples

Consolidation: Exit Question

Minds On

Rewrite each as a power with an exponent. ie: re-write to elimite the decimals or fractions.

$0.25 = 100$ $= \frac{1}{4}$ $= \frac{1}{2}$ $= 2^{-2}$	$9/25 = 3^{2}$ $= (3/5)^{2} \circ ((5/3)^{-2})$ $= (3/5)^{2} \circ ((5/3)^{-2})$	1/4 = 4 ⁻¹ or = 2 ⁻²
1/16 - 16 -1 = 4 - 2 = 2 - 4	0.04 - 100 = 25 = 25 - 5	0.01 - (00 = 10

Solving Logarithmic Equations

Example 1: Selecting an algebraic strategy to solve a logarithmic equation

The Richter scale is used to compare the intensities of earthquakes. The Richter scale magnitude, R, of an earthquake is determined using R = $\log(a/T) + B$, where a is the amplitude of the vertical ground motion in microns (μ), T is the period of the seismic wave in seconds, and B is a factor that accounts for the weakening of the seismic waves (1 μ is equivalent to 10^{-6} m). An earthquake measured 5.5 on the Richter scale, and the period of the seismic wave was 1.8 s. If B equals 3.2, what was the amplitude, a, of the vertical ground motion?

Fround motion?
$$R = log(\frac{\pi}{1.4}) + B$$
 $5.5 = log(\frac{\pi}{1.4}) + 3.2$
 $2.3 = log(\frac{\pi}{1.4})$
 $2.3 = log(\frac{\pi}{1.4})$
 $1 log$

Example 2

b)
$$\log_{7}(3x-5) = \log_{7}16$$

 $3x-5 = 16$
 $3x = 21$
 $1x = 7$

Example 3: Representing sums and differences as single logs to solve equations

a)
$$\log_2 30x - \log_2 5 = \log_2 12$$
 $\log_2 \left(\frac{30x}{5}\right) - \log_2 12$
 $\frac{30x}{5} = 12$
 $30x = 12$
 $30x = 60$
 $12x = 2$

b)
$$\log x + \log x^2 = 12$$

 $\log (x \cdot x^2) = 12$
 $\log x \cdot x^2 = 12$

Example 4: Quadratic log equations

Solve
$$\log_2(x+3) + \log_2(x-3) = 4$$

$$\log_2((x+3)(x-3)) = 4$$

$$\log_2(x^2-4) = 4$$

$$2^4 = x^2 - 4$$

$$x^2 = 25$$

$$x = \pm 5$$
Check each answer
$$(x+3)(x-3) = 4$$

$$x = -5$$

$$x = -5$$

$$x = -5$$

$$x = -5$$

Consolidation

Exit Question

How do we know if any of our solutions are

inadmissible?

If we have loga (negative) the solution is inadmissible.

Consolidation

Practice

Pg. 491
A few from: 1, 2, 4, 5, 7
9, 12