Learning Goal: I will be able to make connections between the laws of exponents and the laws of logarithms.

Minds On: Exponent Laws

Action: Log Laws

Consolidation: page 466 Practice + Exit

Card

Minds On

Exponent Laws

In Grade 9, you learned the Exponent Laws

The Product Rule

$$(a^{x})(a^{y}) = \triangle^{x+y}$$

The Quotient Rule

$$\frac{a^{x}}{a^{y}} = \sqrt{x^{-y}}$$

The Power of a Power Rule

$$(a^x)^y = (x^y)^x$$

Action

Mini-Investigation

Complete the table below using your calculator:

×	log x (to two decimal places)		
2			
4			
8			
16			
32			
64			
128			
256			

Action

Mini-Investigation

Complete the table below using your calculator:

х	log x (to two decimal places)
2	0.30
4	0.60
8	0.90
16	1.20
32	1.51
64	1.81
128	2.11
256	2.41

1. Given the information in the table above, attempt to determine a formula for $\log_a(mn)$.

$$log 6 = 0.90$$
 -> $log (4 \times 2) = 0.90$
 $log 4 = 0.60$
 $log 2 = 0.30$
 $log 6 = log 2 + log 4$
 $log 6 = log 2 + log 4$

2. Given the information in the table above, attempt to determine a formula for $\log_a \left(\frac{m}{n}\right)$.

$$\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$$

$$|og_{a}(\frac{8}{4}) = |og_{a}(2)|$$

= $|og_{a}(2)|$

3. Given the information in the table above, attempt to determine a formula for $\log_a(m)^n$.

$$\log_a(m)^n = n \log_a m$$

Product Law of Logarithms

$$\log_a(mn) = \log_a m + \log_a n$$

Quotient Law of Logarithms

$$\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$$

Power Law of Logarithms

$$\sqrt{\log_a(m)^n} = \bigcap_{n \in \mathbb{N}} O_n \cap O_n$$

Consolidation

Exponents vs. Logarithms

Law	Exponents	Logarithms
Products	$a^m x a^n = a^{m+n}$	$\log_a(mn) = \log_a m + \log_a n$
Quotients	$\left(\frac{a^m}{a^n}\right) = a^{m-n}$	$\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n$
Powers	$\left(a^{m}\right)^{n}=a^{mn}$	$\log_a m^n = n \cdot \log_a m$
Zero Exponents	$a^0 = 1$	$\log_a 1 = 0$
Negative Exponents	$a^{-m} = \left(\frac{1}{a^m}\right)$	$\log_a\left(\frac{1}{a^m}\right) = -m$

Consolidation

Applying the Laws

Fully simplify each logarithmic expression.

$$\log_3 6 + \log_3 4.5$$
 $= \log_3 (6 \times 4.5)$
 $= \log_3 (27)$

log₂ 48 ₹ log₂ 3

$$= \log_{2}\left(\frac{48}{3}\right)$$

$$= \log_{2}\left(16\right)$$

$$= 4$$

$$\log_5 \sqrt[3]{25}$$

$$= \log_5 (25)^{\frac{1}{3}}$$

$$= \frac{1}{3} \log_5 (25)$$

$$= \frac{1}{3} (2)$$

$$= \frac{2}{3}$$

Use the properties of logarithms to express $\log_a \sqrt{\frac{x^3y^2}{w}}$ in terms of $\log_a x$, $\log_a y$ and $\log_a w$.

$$\begin{aligned} &\log_{a} \sqrt{xy^{2}} \\ &= \log_{a} \left(\frac{x^{3}y^{2}}{2} \right)^{\frac{1}{2}} \\ &= \frac{1}{2} \log_{a} \left(\frac{x^{3}y^{2}}{2} \right)^{\frac{1}{2}} \\ &= \frac{1}{2} \left(\log_{a} x^{3} + \log_{a} y^{2} - \log_{a} w \right) \\ &= \frac{1}{2} \left(3 \log_{a} x + 2 \log_{a} y - \log_{a} w \right) \\ &= \frac{2}{2} \log_{a} x + \log_{a} y - \frac{1}{2} \log_{a} w \end{aligned}$$

Consolidation

Practice

Pg. 475

2ef, 3, 4

6 - 10 (a few from each)