Learning Goal: I will be able to graph transformations of logarithmic functions.

Minds On: What's that button do?

Action: Graphing Transformations

Consolidation: Where are they now?

Minds On

Yesterday we learned what logax means.

It means, the exponent that must be applied to base *a* to get a value of *x*.

Your calculator has a **log** button, let's figure out what it does! (NO SPOILERS!)

Perform the following calculations:

$$\log -1 = e^{-1/2}$$

$$\log 0 = e(0)$$

$$log 0.1 =$$

$$log 0.5 =$$

$$log 10 =$$

What do you think the button does?

Minds On

What's that button do?

$$log -1 = error$$

$$log 0 = error$$

$$\log 0.1 = -1$$

$\log 0.5 = -0.30$

$$log 2 = 0.30$$

$$log 10 = 1$$

What if we add in a few more?

What do you think the button does?

$$\log 10 = 1 \qquad \Rightarrow \log |0\rangle$$

Minds On

What's that button do?

The log button on your calculator is actually

log₁₀

Graphing $f(x) = log_{10}x$

Let's find some "nice" points to graph f(x) on the grid below.

Graphing $g(x) = a \log_{10}(k(x - d)) + c$

What do each of the parameters: a, k, d, c do to our function $f(x) = log_{10}x$?

vertical stretch; |a| > | Vertical compression; |a| < | multiply y-values by a if a is negative, reflects in X-axis

horizontal stretch: 1k/2/
horizontal compression: 1k/2/
divide X-values by K
if k is negative, reflects in y-axis

Shifts left: 200 shifts right: 200 add 2 to x-values

Shifts up: C>O Shifts down: C<O shifts down: C<O add c to y-values

Graphing $g(x) = a log_{10}(k(x - d)) + c$

Given the graph of $f(x) = log_{10}x$ below, sketch $g(x) = -2log_{10}(-(x-1)) - 2$.

What is the domain of g(x)?

8

Graphing $g(x) = a \log_{10}(k(x - d)) + c$

How can we express the domain of g(x)?

Domain

If k>0, domain =
$$\{x \in \mathbb{R} \mid x > J \}$$

If k<0, domain = $\{x \in \mathbb{R} \mid x \geq J \}$

Determining the coordinates of the points of $g(x) = a \log_{10}(k(x - d)) + c$

Given the table of values of $f(x) = log_{10}x$ below, determine the coordinates of the corresponding points of $g(x) = 3log_{10}(-2(x+3)+1)$

х	у		$\frac{x}{-2}$ - 3	3y+
$\frac{1}{10} = 0$	l –1	\Rightarrow	-3.05	-2
1	0		-3.5	
10	1		-9	H

Consolidation

Where are they now?

 $f(x) = log_{10}x$ has the following points:

$$\left(\frac{1}{10}, -1\right), (1, 0), (10, 1)$$

State the coordinates of the "images" of the points above for each function below.

$$g(x) = -2 \log_{10} x + 2$$

$$x - values inchanged$$

$$y - values: (-2y + 2)$$

$$New (pints = (10)4), (1,2), (10,0)$$

Consolidation

Where are they now?

 $f(x) = log_{10}x$ has the following points:

$$\left(\frac{1}{10}, -1\right), (1, 0), (10, 1)$$

State the coordinates of the "images" of the points above for each function below.

$$h(x) = 0.5 \log_{10} \left(-\frac{1}{5}(x+3) \right) - 1$$

$$\times -\text{Unlines} : -5x - 3$$

$$y - \text{Values} : 0.5y - 1$$

$$\left(-\frac{1}{5}(x+3) \right) \left(-\frac{1}{5}(x+3) \right) \left(-\frac{1}{5}(x+3) \right) = 0.5$$

Consolidation

Practice

Pg. 457

2b, 4, 8, 9