Learning Goal: I will be able to use equivalent trigonometric relationships to prove trigonometric identities.

Minds On: Same or different?

Action: This is how we prove it.

Consolidation: Additional Questions

$$\cos x = \sin x \cot x$$

$$\cos(\pi - x) = -\cos x$$

$$\csc 2x = \frac{\csc x}{2\cos x}$$

$$1 - 2\cos^2 x = \sin x \cos x (\tan x - \cot x)$$

Proving Identities Using Other Identities

$$\cos x = \sin x \cot x$$

$$\frac{\cos x}{\sin x} = \frac{\sin x \cot x}{\sin x}$$

$$= \frac{\cos x}{\sin x} = \cot x$$

$$\frac{\cos x}{\sin x} = \frac{\sin x \cot x}{\sin x}$$

$$\frac{\cos x}{\sin x} = \cot x$$

$$\cot x = \cot x$$

$$\cot x = \cot x$$

$$\cos(\pi - x) = -\cos x$$

$$= \cos(\pi - x)$$

$$csc 2x = \frac{csc x}{2 cos x}$$

$$= \frac{csc x}{2 cos x}$$

$$\frac{R.s.}{s.n \times cos \times (ton \times - cot \times)}$$

$$= sin \times cos \times (ton \times - cot \times)$$

$$= sin \times cos \times (\frac{sin \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{cos \times} - \frac{cos \times}{sin \times})$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times}$$

$$= sin \times cos \times (\frac{sin \times}{sin \times} - \frac{cos \times}{cos \times}$$

$$= (1 - cos \times) - (1 - cos \times) - (1 - cos \times)$$

$$= (1 - cos \times) - (1 - cos \times)$$

$$= (1 - cos \times) - (1 - cos \times)$$

$$= (1 - cos \times) - (1 - cos \times)$$

$$= (1 - cos \times) - (1 - cos \times)$$

$$= (1 - cos \times) - (1 - cos \times)$$

$$= (1 - cos \times)$$

Action

This is how we prove it!

We can prove trigonometric identities by:

- 1. Simplifying the more complicated side until it is identical to the other side.
- 2. Manipulating both sides to get the same expression.

While proving an identity we may be required to:

- 1. Rewrite expressions using our known trigonometric identities.
- 2. Breaking an expression into multiple parts.
- 3. Finding a common denominator.
- 4. Factoring an expression.

Prove that $\frac{\sin 2x}{1+\cos 2x} = \tan x$.

R.S.
$$= ton \times$$

$$= sin 2x$$

$$= sin x$$

$$= 2 sin x cos x$$

$$+ cos 2x$$

$$= 2 sin x cos x$$

$$+ 2 cos x$$

$$= 2 sin x cos x$$

$$+ 2 cos x$$

$$= 2 sin x cos x$$

$$+ 2 cos x$$

$$= 2 sin x cos x$$

$$+ 2 cos x$$

$$= 2 sin x cos x$$

$$+ 2 cos x$$

$$= 2 sin x cos x$$

$$+ 2 cos x$$

$$= 2 sin x cos x$$

$$+ 2 cos x$$

$$= 2 sin x cos x$$

$$+ 2 cos x$$

$$= 3 cos x$$

$$+ 3 cos x$$

$$= 4 cos x$$

$$+ 3 cos x$$

$$+ 3 cos x$$

$$= 3 cos x$$

$$+ 4 cos x$$

$$+$$

Prove that $\sin x + \sin 2x = \sin 3x$ is not an identity.

To prove that something is NOT an identity, just provide an

example where it doesn't work.

Prove that $\cos\left(\frac{\pi}{2} + x\right) = -\sin x$.

$$\frac{L.S.}{= \cos\left(\frac{\pi}{2} + x\right)}$$

$$= \cos\left(\frac{\pi}{2} + x\right)$$

$$= \cos\left(\frac{\pi}{2} + x\right)$$

$$= \cos\left(\frac{\pi}{2} + x\right)$$

$$= \cos\left(\frac{\pi}{2} + x\right)$$

$$= O \times \cos X - | \times \sin X$$

$$= -\sin X$$

$$(05 \left(\frac{11}{2} + \chi\right) = -\sin X$$

$$(.5. - h.), \quad (05 \left(\frac{11}{2} + \chi\right) = -\sin X$$

Prove that
$$\frac{\cos(x-y)}{\cos(x+y)} = \frac{1+\tan x \tan y}{1-\tan x \tan y}$$
.

$$\frac{RS}{S}$$

$$= \frac{1+\tan x \tan y}{1-\tan x \tan y}$$

$$= \frac{1+\frac{\sin x}{\cos x} \times \frac{\sin y}{\cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \sin y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \cos y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \cos y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \cos y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \cos y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \cos y}{\cos x \cos y}$$

$$= \frac{\cos x \cos y + \sin x \cos y}{\cos x \cos y}$$

$$= \frac{\cos x \cos x \cos y}{\cos x \cos y}$$

$$= \frac{\cos x \cos x \cos y}{\cos x \cos x}$$

$$= \frac{\cos x \cos x \cos x}{\cos x}$$

$$= \frac{\cos x}{\cos x}$$

$$= \frac{\cos x}{\cos x}$$

Prove that $\tan 2x - 2 \tan 2x \sin^2 x = \sin 2x$.

$$\frac{L.s.}{ton 2x - 2 tan 2x sin^2 x}$$

$$= tan 2x (1 - 2sin^2 x)$$

$$= tan 2x (cos 2x)$$

$$= \frac{sin 2x}{cos2x} (cos2x)$$

$$= \frac{sin 2x}{cos2x} (cos2x)$$

$$= \frac{l.s.}{l.s.} = \frac{l.s.}{l.s.} = \frac{l.s.}{l.s.} = \frac{l.s.}{l.s.}$$

Consolidation

Hints

- 1. Create opportunities for items to "cancel".
- 2. When you see tan, think sin/cos
- 3. When you see csc, sec, or cot, think sin, cos, or tan.
- 4. Always look to see if an expression can be factored.

* Look for differences of squares.

Consolidation

Practice

Pg. 417

5, 9, 10, 11