Learning Goal: I will be able to sketch the reciprocal trigonometric functions.

Minds On: Sketching Reciprocals

Action: Sketching the Reciprocal Trigonometric Functions

Consolidation: Domain and Range

Minds On

Sketching the Reciprocal

Given the graph of f(x) as seen below, sketch the graph of the reciprocal function 1/f(x).

Properties of Reciprocal Functions

f(x)	Positive	Negative	Increasing	Decreasing	Approaches 0	Approaches ∞
$\frac{1}{f(x)}$	Positive	Negative	December	Increasing	Approach	Approach O

f(x)	Equals Zero	Vertical Asymptote	Equals 1	Equals -1	
$\frac{1}{f(x)}$	undefined	Zero		_	

Action

Graphing the Reciprocal Trigonometric Functions

For each reciprocal function, first graph its primary function, then use the properties of reciprocal functions to graph the reciprocal.

	Period	Amplitude	Asymptotes	y-intercept	heta-intercepts
csc θ	211	undatined	О, П, 2 П,	none	none
sec θ	21	monfind	1,31,57	.]	none
cot θ	1	mdoline d	0,1,21,	none	工, 37,

Consolidation

Representing Patterns in Trigonometric Functions

*The equation $t_n = a + (n - 1)d$ can be used to represent the general term of any arithmetic sequence, where a is the first term and d is the common difference.

Use this equation to find an expression that describes each of the following values for $y = \sin x$ where $n \in I$ and x is in radians.

- a) Maximum Values $t_n = \frac{\pi}{2} + (n-1)2\pi$
- b) Minimum Values
- c) x-Intercepts

Minds On

Warm-Up Question

Sketch a rough graph of the function below

on the interval $0 \le x \le 2\pi$.

e interval
$$0 \le x \le 2\pi$$
.
$$y = -\cos\left(3\left(x - \frac{\pi}{3}\right)\right) - 1 \text{ Period} = \frac{2\pi}{3}$$

Consolidation

Homework

Pg. 353

1 - 3, 6