Learning Goal: I will be able to use transformations to sketch the graphs of the primary trig functions in radians. Given a data set, I will be able to model the data using a sinusoidal function.

Minds On: Activate - a, k, c, d...what do they do, what order do we do them in - look at graph!

Action: Note - transformations of functions

Consolidation: Exit Question

RAFT

Please read or work quietly on something until 10:30.

Minds On

$y = a \sin(k(x - d)) + c$

What effect do the parameters a, k, cand d have on a graph?

apply to?

What operation does each parameter impose?

Example 1: Sketch these transformations that are applied to the graph of $y = \sin x$, where $0 \le x \le 2\pi$.

- A vertical stretch by a factor of 3
- A horizontal compression by a factor of ½

 A horizontal translation $\frac{\pi}{2}$ to the left

 A vertical stretch by a factor of ½ y = 3 $s'_{10}\left(2\left(x + \frac{\pi}{6}\right)\right) \frac{\pi}{6}$ A horizontal translation $\frac{\pi}{6}$ to the left
- A vertical translation 1 down

X	У		$\frac{x}{2} - \frac{\pi}{6}$	39 -1
O T/2	0		- <u>TI</u>	
O 7/2 TT 3/1/2 2 TT	0 -1	9	12	2
2 1	1 ()		$\frac{\pi}{3}$	
			711	-4
			511	

5.4 - Transformations of Trigonometric Functinos

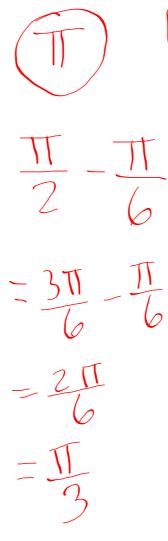
October 30, 2017

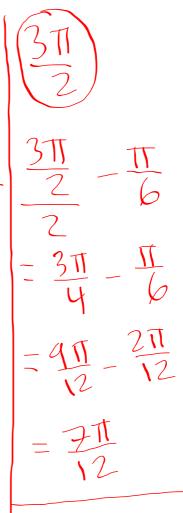
$$\frac{1}{2} = \frac{1}{2} - \frac{1}{6}$$

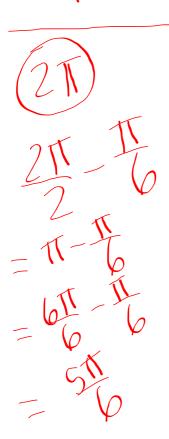
$$= \frac{1}{4} - \frac{1}{6}$$

$$= \frac{3}{12} - \frac{2}{12}$$

$$= \frac{1}{12}$$







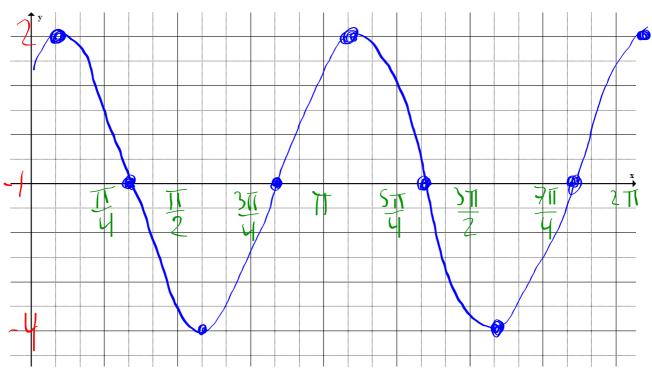
Example 1: Sketch these transformations that are applied to the graph of $y = \sin x$, where $0 \le x \le 2\pi$.

- A vertical stretch by a factor of 3
- A horizontal compression by a factor of ½
- A horizontal translation $\frac{\pi}{6}$ to the left
- A vertical translation 1 down

$$y = 3 \sin(2(x + T)) - 1$$

Solution A: Apply transformations to key points of the parent function

Solution A. Apply transjormations to k	ey points of th	e parent junction	
$axis=1$ $\frac{x}{2}$	- II 6	34 -	
amplitud=3	<u>ti</u>	-	Period = 2TT
150	2	2	period = 2TT
600	<u>T</u> 3	_	period-I
105 8	211	-4	
1500	511		



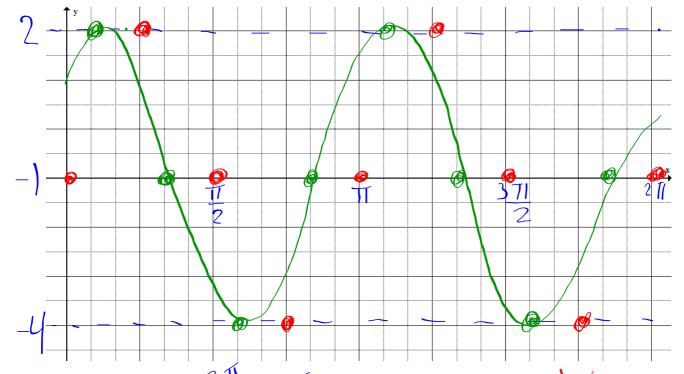
our Beach time

Example 1: Sketch these transformations that are applied to the graph of $y = \sin x$, where $0 \le x \le 2\pi$.

- A vertical stretch by a factor of 3
- A horizontal compression by a factor of ½
- A horizontal translation $\frac{\pi}{6}$ to the left
- · A vertical translation 1 down

sketch w/ everything exapt d, then shift points

Solution B: Use the features of the transformed function

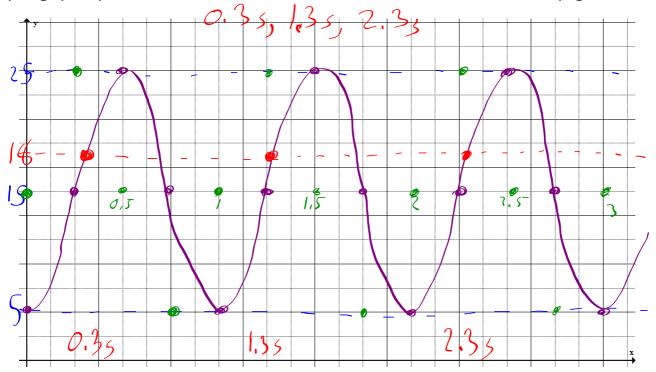


period = 2T = To axis amplitude = 2

now shift left

Example 2: A mass on a spring is pulled toward the floor and released, causing it to move up and down. Its height, in centimetres, above the floor after t seconds is given by the function

 $h(t) = 10\sin(2\pi t + 1.5\pi) + 15$, where $0 \le t \le 3$. Sketch a graph of height versus time. Then use your graph to predict when the mass will be 18 cm above the floor as it travels in an upright direction.

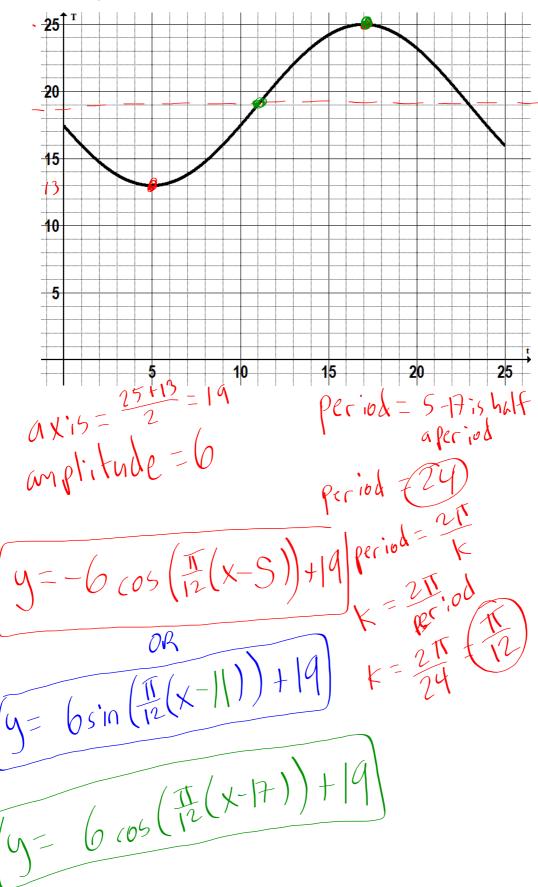


 $h(t)=10 \sin(2\pi(t+0.75))+15$ period = 2TT = 1 Shift points left by 0.75 OR right by 25

axis=15 mplitude=10

Example 3: The following graph shows the temperature in Nellie's dorm room over a 24 h period.

Determine the equation of this sinusoidal function.



Summary of Key Ideas

- The graphs of functions of the form f(x) = a sin(k(x d)) + c and f(x) = a cos(k(x d)) + c are transformations of the parent functions y = sin(x) and y = cos(x), respectively.
- The parameters a, k, d, and c give useful information about transformations and characteristics of the function.

Transformations of the Parent Function	Characteristics of the Transformed Function	
a gives the vertical stretch/compression factor. If a < 0, there is also a reflection in the x-axis.	a gives the amplitude.	
	$\left \frac{2\pi}{k}\right $ gives the period.	
If k < 0, there is also a reflection in the y-axis.		
d gives the horizontal translation.	d gives the horizontal translation.	
c gives the vertical translation.	y = c gives the equation of the axis.	

 If the independent variable (x, t, etc) has a coefficient other than +1, the argument (angle) must be factored to separate the values of k and d. For example,

y = 3 cos(2x +
$$\pi$$
) should be changed to $y = 3 \cos(2(x + \frac{\pi}{2}))$.

Consolidation

Pg. 343
1, 4, 6, 8