Learning Goal: I will graph the primary trigonometric functions using radians.

Minds On: Whiteboard Radians

Action: Graphing the functions

Consolidation: Follow-Up

Minds On

Opening Question

Determine the exact values of the primary trig ratios when

$$\theta = \frac{11\pi}{6}$$

then check using your calculator.

Minds On

Rough Sketches

On the back of your white board, make a rough sketch of $y = \sin \theta$ and $y = \cos \theta$ through one period. Use degrees for your horizontal axis.

*Draw each in a different colour.

Minds On

Rough Sketches

You may remember from your trig. identities last year that

 $\tan \theta = \frac{\sin \theta}{\cos \theta}$

Get another colour of marker, and use this information to try and make a rough sketch of

Action

Graphing the Primary Trigonometric Functions

Consolidation

Follow-Up Questions

Pg. 336 2c, 3, 5

*Switch your calculator to radians!

- c) The equation $t_n = a + (n-1)d$ can be used to represent the general term of any arithmetic sequence, where a is the first term and d is the common difference. Use this equation to find an expression that describes the location of each of the following values for $y = \sin \theta$, where $n \in \mathbf{I}$ and θ is in radians.
 - i) θ -intercepts
 - ii) maximum values
 - iii) minimum values

iii) minimum values

$$t_{n} = O + (n-1)TT$$

$$d = TT$$

$$t_{n} = (n-1)TT$$

$$t_{n} = TT$$

$$t_$$