
Learning Goal: I will determine exact values for trig ratios of special angles.

Minds On: Special Triangles from grade 11...

Action: Note

Consolidation: Practice page - finish for homework

# **Know Your Radians!**



| 30°   | 45°      | 60°           | 90°               |
|-------|----------|---------------|-------------------|
| #6    | # 4      | <u>T</u> 3    | <u>T</u> 2        |
| 120°  | 135°     | 150°          | 180°              |
| 211 3 | 3#       | <u>ST</u>     | T                 |
| 210°  | 225°     | 240°          | 2700              |
|       | 223      | 240           | 270°              |
| 711   | 511<br>4 | 41X<br>3      | 3 <del>11</del> 2 |
| 7T    | _        | 41\frac{3}{3} | 311               |

### **Know Your Radians!**

The keys to remember radians are remembering:

| $\pi$ | $\pi$ | $\pi$ | $\pi$ |
|-------|-------|-------|-------|
|       |       |       |       |
| 6     | 4     | 3     | 2     |

#### **Know Your Radians!**

#### **Whiteboards**

$$\frac{3\pi}{4}$$

Think: is it closer to 1 pi or 2 pi? More or less?

### **Know Your Radians!**

### **Know Your Radians!**

# **Whiteboards**

 $\frac{3\pi}{2}$ 

### **Know Your Radians!**

# **Whiteboards**

 $\frac{4\pi}{3}$ 

### **Know Your Radians!**

# **Whiteboards**

<u>5π</u>

### **Know Your Radians!**

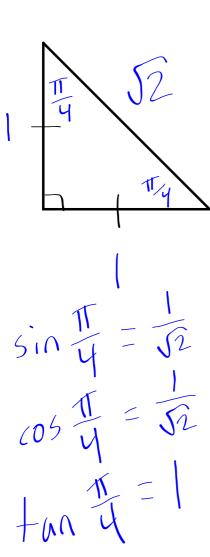
### **Know Your Radians!**

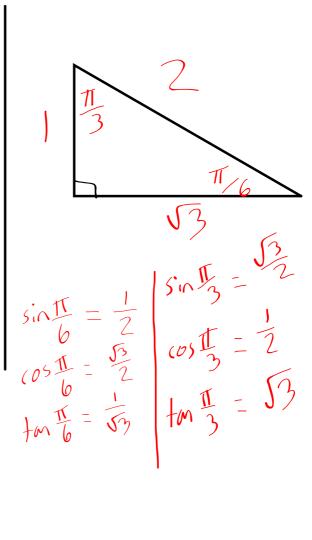
# **Whiteboards**

 $\frac{2\pi}{3}$ 

### **Know Your Radians!**

$$\frac{7\pi}{4}$$

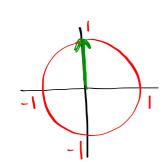

### **Know Your Radians!**


$$\frac{7\pi}{6}$$

#### Action

#### 6.2 Radian Measure and Angles on the Cartesian Plane

**Example 1:** Determine the radian measures of the angles in the special triangles, and calculate their primary trigonometric ratios.






**Example 2:** Determine the exact value of each trigonometric ratio.

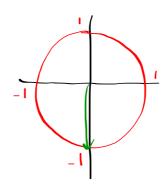
a) 
$$\sin(\frac{\pi}{2})$$

$$\int e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} \int e^{$$



unit circle

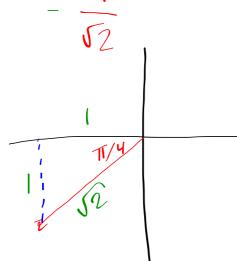
a) 
$$\sin(\frac{\pi}{2})$$

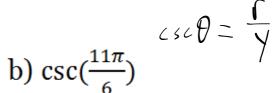

Femerabari sin  $\theta = \frac{y}{x}$ 

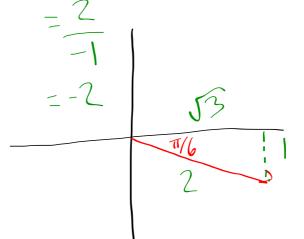
b)  $\cot(\frac{3\pi}{2})$ 

Femerabari sin  $\theta = \frac{y}{x}$  so  $\cot \theta = \frac{y}{y}$ 

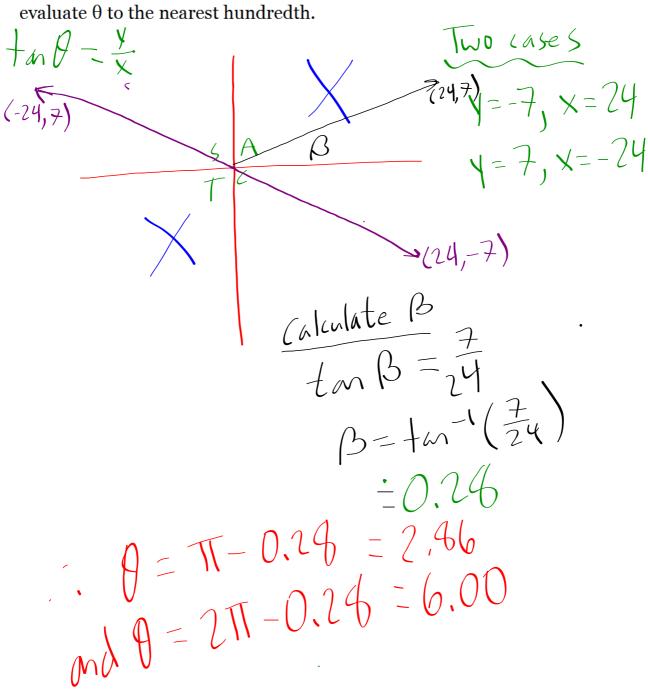
$$= \frac{1}{1} = 1$$


$$= \frac{0}{1} = 0$$



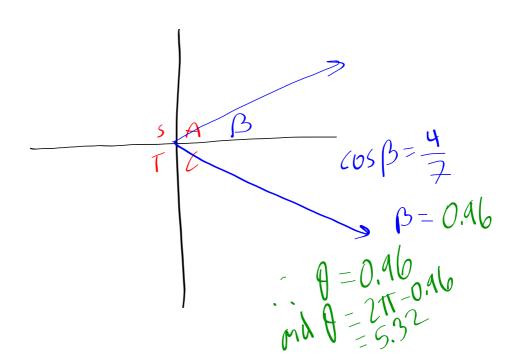


**Example 3:** Determine the exact value of each

trigonometric ratio.


a)
$$\cos(\frac{5\pi}{4})$$








**Example 4:** If  $tan\theta = (-\frac{7}{24})$ , where  $0 \le \theta \le 2\pi$ , evaluate  $\theta$  to the property bundredth

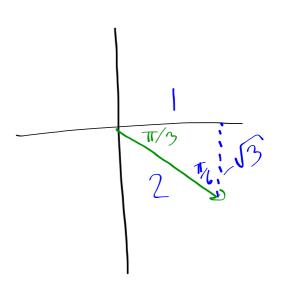


If  $sin\theta = \frac{-3}{5}$ , where  $0 \le \theta \le 2\pi$ calculate  $\theta$  to the nearest hundreth.  $sin\theta = \frac{1}{5}$   $sin\theta = \frac{3}{5}$   $sin\theta = \frac{3}{5}$ 

If  $\cos \theta = \frac{4}{7}$ , find  $\theta$ .



#### Consolidation


Determine the exact values of the primary trig ratios when

$$\theta = \frac{5\pi}{3}$$

$$5 in \frac{5\pi}{3} = \frac{-53}{2}$$

$$\cos \frac{\$71}{3} = \frac{1}{2}$$

$$t_{a} = -\sqrt{3}$$



Pg. 330 2, 5, 7, 8, 9, 11

\*Switch your calculator to radians!