Future Value Annuities
Present Value Annuity
A series of withdrawals from an investment, or a series of payments on a loan, made at regular intervals.

Formula

$$
P V=R \times\left(\frac{1-(1+i)^{-n}}{i}\right)
$$

$P V$ represents the present value of the annuity
R represents the regular payment / withdrawal made at each compounding period i is the interest rate per compounding period, as a decimal n is the total number of compounding periods

Example
How much would you need to invest at 8.3% compounded annually to provide $\$ 500$ per year for the next 10 years?

$$
n=10
$$

How much would you need to invest at 5.4% interest, compounded quarterly, to provide $\$ 1,000$ every 3 months for the next 4 years?
$R=1000$

$$
P V=1000 \times\left(\frac{1-\left(1+\frac{0.044}{4}\right)^{16}}{\frac{0.054}{4}}\right)
$$

$$
i=\frac{0.054}{4} *\left\{P=1000 \times\left(\frac{1-(1.0135)^{-16}}{0.0135}\right)\right.
$$

$n=4 \times 4=16 \quad P V=14303.67$
Example
You borrow $\$ 200,000$ from the bank to purchase yacht, times are good. The bank charges 6.6%

We pay 1502.94 every month for 20 years (240 times 1)
We pay $1502.94 \times 240=360705.60$
Total interest is $360705.60-200100=1607755.6$

$$
\begin{aligned}
& i=\frac{0.066}{12} \\
& 20000=R \times\left(\frac{1-(1.0055)^{-240}}{0.0055}\right) \\
& n=12 \times 2 . \quad R=1502 \text { of } 4
\end{aligned}
$$

