Date:			

Learning Goal

Expanding Binomials

Multiply these two binomials (expand)

$$(x - 4)(x + 3)$$

Expanding Binomials

$$(x + 4)^2$$

Expanding Binomials

$$y = 3(x - 2)^2$$

$$y = -2(x + 5)^2$$

$$y = 2(x + 1)^2 - 5$$

$$y = 0.5(x + 2)^2 - 2$$

$$y = -0.25(x + 4)^2 + 7$$

Standard Form Equations

Last unit we dealt with lots of quadratics (parabolas) in *vertex form*

Vertex Form:
$$y = a(x - h)^2 + k$$

This unit we are going to look at quadratics in **standard form** as well!

Standard Form:
$$y = ax^2 + bx + c$$

As you have seen, we can get from Vertex Form to Standard Form by

Standard Form Equations

standard form: $y = ax^2 + bx + c$

What does the c in the standard form equation tell us?

Converting from Vertex Form to Standard Form

1. Change the	$(x - h)^2$ part of the
vertex form	equation to
	<u> </u>
2	(x - h)(x - h)
into a new se	t of brackets using
	or
3	through the
new set of br	rackets by
4. Collect	and
simplify.	

Write each in standard form.

State the vertex and y-intercept for each.

1.
$$y = (x + 6)^2$$

2. $y = (x - 1)^2$

3.
$$y = 3(x + 9)^2$$

4. $y = -0.25(x + 8)^2$

5.
$$y = (x - 8)^2 + 3$$

6.
$$y = 5(x - 4)^2 + 12$$

7.
$$y = 2(x + 5)^2 - 10$$

8.
$$y = 0.5(x - 6)^2 - 11$$